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Abstract. The peculiarities of a low temperature heat transfer through a ballistic quantum dot (a double
potential barrier) with interacting leads due to a long-range Coulomb interaction (in the geometrical
capacitance approach) are considered. It is found that the thermal conductance K shows periodic peaks as
a function of the electrostatic potential of a dot at low temperatures. At the peak maximum it is K ∼ T
whereas near the minimum it is K ∼ T 3. Near the peak maximum the dependence K(T ) is essentially
nonmonotonic at the temperatures correspondent to the level spacing in the quantum dot.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 73.20.Mf Collective excitations
(including plasmons and other charge-density excitations) – 73.40.Gk Tunneling

1 Introduction

At low temperatures the charging energy affects consid-
erably the electron transport in the mesoscopic systems
connected to an environment by tunnel junctions [1–4]. An
electron tunneling through the potential barrier changes
the charge of a mesoscopic sample by 1e that changes the
energy of the system by Ec = e2/(2C), where e is an elec-
tron charge; C is the geometrical capacitance of a sample.
Note that for the mesoscopic system the typical capaci-
tance is C ≤ 10−15 F, that corresponds to Ec ≥ 1 K. At
low temperatures

T � Ec, (1)

in the common case the charge transfer is suppressed (the
Coulomb blockade effect) [5–10]. However, at some values
of a sample potential Vg the electrostatic energy of the
system E = (q − eN)2/(2C) (where q is the charge of
the sample; N = CVg/e) is degenerate in q (q ↔ q + e)
that occurs at half-integer values of N [7,11]. In this case
the Coulomb blockade is lifted and the conductance of the
system increases.

The same effect must be shown by other transport co-
efficients, in particular, the thermal conductance K which
is considered in the present paper. In the case of a one-
dimensional thermal transport the main consequence of
the Coulomb blockade effect consists in the considerable
contribution of (neutral) electron-hole pairs (plasmons)
into the heat transfer. This is due to as follows. In ref-
erence [12] it was shown for the strong cotunneling regime
that tunneling of spinless noninteracting (g = 1) electrons
through a double barrier (a quantum dot) in the Coulomb
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blockade regime can be considered as tunneling of inter-
acting electrons described as a Luttinger liquid [13–16]
with g∗ = g/2 = 1/2 (where g(g∗) is Haldane’s parame-
ter) through a single barrier [17]. The thermal transport
in a Luttinger liquid with a single backscattered impurity
was considered in reference [18]. Where it was shown that
at low temperatures the heat is carried by electrons as well
as by plasmons (electron-hole pairs). The electron contri-
bution (i.e., due to tunneling of electrons) to the thermal
conductance is Ke ∼ T

2
g−1 whereas the plasmon contribu-

tion is Kp ∼ T 3. At g = 1/2 these contributions are of the
same order, but at g < 1/2 the plasmon contribution dom-
inates at low temperatures. Thus, if the noninteracting
electrons tunnel through a double barrier the plasmon and
electron contributions to the heat transfer are the same,
whereas if the repulsively interacting electrons tunnel
through a double barrier (that may be described as tun-
neling of a Luttinger liquid with g∗ = g/2 < 1/2 through
a single barrier) the plasmon contribution to the thermal
conductance will dominate. These circumstances allow us
to develop the theory of a thermal transport based on the
self-consistent harmonic approximation (SCHA) [19,20]
which, in fact, describes the transport of plasmons.

In the present paper we concentrate on the peculiari-
ties of thermal transport in a one-dimensional Luttinger
liquid with a double potential barrier (a quantum dot)
which are due to the Coulomb blockade effect. Note, that
in the realistic case the mesoscopic system (a quantum
dot with one-dimensional Luttinger liquid leads) is con-
nected to reservoirs of noninteracting electrons that can
significantly modify the transport as electrical [21] as
thermal [22–24]. Strictly speaking, it is necessary to take
into account such connection. However, to clarify the effect



524 The European Physical Journal B

of Coulomb blockade on the thermal transport we will
follow reference [18] and consider infinite one-dimensional
leads (more precisely, we consider an adiabatic (as for elec-
trons as for plasmons) connection between a quantum dot
and reservoirs and assume the same electrons in the meso-
scopic system and in reservoirs).

We have calculated the thermal conductance K of a
quantum dot as a function of both the temperature T and
the potential Vg of a dot. The dependence K(Vg) consists
of a series of Coulomb blockade peaks with a tempera-
ture dependent shape. The dependence K(T ) is essentially
nonmonotonic when the temperature is of the order of the
level spacing in the quantum dot.

We note, that the study of a thermal transport may
give evidence for the non-Fermi-liquid behaviour of elec-
tron systems [22–24]. On the other hand, the heating ef-
fects influence on the behaviour of mesoscopic systems
which show the Coulomb blockade effect (see e.g., [25])
that requires of a detailed study of the heat transport in
such systems.

2 Model and basic equations

As a model we consider a one-dimensional ballistic chan-
nel (lead) containing spinless electrons. Two point barri-
ers with a strength V1 and V2 located at x1 = −d/2 and
x2 = d/2 model a quantum dot (QD). The potential differ-
ence Vg between the QD and the lead may be changed by
the gate. The left- (x < x1) and right-hand (x > x2) parts
of a lead couple the QD to electron reservoirs with the
temperature T1 and T2 and with the same electrochemi-
cal potentials µ1 = µ2 = µ. We ignore any inelastic pro-
cesses in the system (the QD plus one-dimensional leads)
and consider the QD as a purely elastic scatterer. This ap-
proach is valid at enough low temperatures when the elec-
tron phase breaking length Lφ(T ) far exceeds the size of
a mesoscopic system. The heat transport (like the charge
transport) is considered as the transport between the elec-
tron reservoirs (which are far from the QD) where the
inelastic processes occur. Such an approach is usual for
the mesoscopic physics [26,27]. The thermal conductance
we will calculate in the linear regime when the tempera-
ture difference is small ∆T = |T1 − T2| � T .

Such an extreme simple model, nevertheless, allows to
take into account the effect of a charging energy as well
as the effect of spatial quantization within the quantum
dot [28] on the heat transport at low temperatures. Note,
that such a model [29] corresponds to the experimental
configuration when the QD is connected to electron reser-
voirs through the adiabatic one-mode quantum point con-
tacts. The transmission coefficients of such contacts can be
varied from zero to unit. We assume that at low energies
∆ε ∼ T � µ the potential barrier strengths V1 and V2 do
not depend on the energy. So, we can put Vi = µπ−1ri/ti
(i = 1, 2) [12], where ri and ti are the modulus of the
reflection amplitude and transmission amplitude, respec-
tively, which describe tunneling of electrons with the

Fermi energy through the potential barrier Vi. Accord-
ing to the Landauer-Büttiker approach [30], the electrical
conductance of a single barrier for the case of noninter-
acting (g = 1) spinless electrons is Gi = G0t

2
i , where

G0 = e2/(2π~) is the conductance quantum. Whereas,
the interelectron interactions (g 6= 1) renormalize the po-
tential strength that makes the conductance temperature
dependent [17].

Interesting in the low temperature (T � Ec � µ)
behaviour of our system we can linearize the electron
spectrum near the Fermi energy µ and describe one-
dimensional interacting electrons as a Luttinger liquid.
The low-energy physics of a Luttinger liquid is well de-
scribed via the method of bozonization [14,15] which al-
lows to account the charging energy (in the geometrical
capacitance C approach) exactly. In this method the spin-
less fermion (electron) field operator is expressed in terms
of a bosonic (phase) field θ(x, t).

Using the standard calculations and integrating out
the fluctuations in θ for all x excepting x1 and x2 we can
obtain an effective action Seff [28] for our system as follows

Seff [θ, φ]=
~
gβ

∞∑
n=−∞

{
2|ωn|

1+e−|ωn|/∆ω
|θn|2

+
|ωn|

2(1−e−|ωn|/∆ω)
|φn|2

}
+
∫ β

0

dτ
{
V1 cos(π1/2[2θ(τ) − φ(τ)] − kFd)

+V2 cos(π1/2[2θ(τ) + φ(τ)] + kFd)
}

+
Ec

π

∫ β

0

{
φ(τ) − π1/2N

}2

. (2)

Here τ = it is an imaginary time; β = 1/T ; ωn = 2πn/β
is the Matsubara frequency (n is an integer); ∆ω = v/d;
v and g are Haldane’s parameters [16] (for noninteract-
ing electrons g = 1; v = vF = π~ρ0/m

∗, where vF

is the Fermi velocity, ρ0 is the mean density of elec-
trons, m∗ is the effective electron mass); kF = πρ0

is the Fermi wave number; θ(τ)=(θ(x2, τ)+θ(x1, τ))/2;
φ(τ)=θ(x2, τ)-θ(x1, τ); θn and φn are the Fourier coef-
ficients: x(τ)= 1

β

∑
n e−iωnτxn+ζx, (x ≡ θ, φ; ζx is the

zero mode). The last term in equation (2) decries
the charging energy of a system. Note that the field
φ(τ) is related to the excess charge of a quantum dot
δq=eπ−1/2φ [17,28].

Now we obtain the approximate expression for Seff de-
scribing the low-amplitude oscillations of a bosonic field
θ(τ). To this end we first assume that V1, V2 → 0 and
average the scattering terms over the fluctuations of a
quantum dot charge (over the field φ) [12]. At T � Ec
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equation (1) we obtain

S
′

eff =
~
gβ

∑
n

{
2|ωn|

1 + e−|ωn|/∆ω
|θn|2

+
(

|ωn|
2(1− e−|ωn|/∆ω)

+
gEc

π~

)
|φn|2

}
+ V

∫ β

0

dτ cos(2π1/2θ(τ)), (3)

where

V =
(

2gγEc

πµ

)g/2 (
V 2

1 +V 2
2 +2V1V2 cos(2πN+2kFd)

)1/2
.

(4)

Here γ = eC with C ≈ 0.5772 being the Euler’s constant.
Accounting only low-amplitude fluctuations of θ we can
write cos(2π1/2θ) ≈ 1− 2πθ2. In addition we must renor-
malize the potential V → V ∗ [19,20] integrating out the
modes θn with the energy ~ωn higher than V ∗. This is
possible because in the main approximation such fluctua-
tions are not affected by the potential V ∗ and, therefore,
they are fluctuations of a free field. The final expression
for the effective action in the self-consistent harmonic ap-
proximation is

SSCHA =
~
gβ

∑
n

{(
2|ωn|

1 + e−|ωn|/∆ω
− ωV

)
|θn|2

+
(

2|ωn|
1− e−|ωn|/∆ω + ωc

)
|φn|2

4

}
. (5)

Here ωc = 4gEc/(π~) and

~ωV = 2πgV (V/µ)g/(2−g), (6)

where we use the Fermi energy µ as a high-frequency cut-
off. Below we apply this action, equation (5) for describing
the low-temperature heat transfer through a quantum dot.
We assume that the results will be qualitatively correct at
arbitrary strength of the potential barriers V1 and V2. This
approximation describes the dynamics of plasmons whose
contribution into the heat transfer dominates in the case
of repulsively (g < 1) interacting electrons.

In the linear regime the thermal transport is char-
acterized by the thermal conductance K = −Q/∆T ,
where Q is the heat current between the reservoirs and
∆T = T2 − T1, |∆T | � T [27]. The thermal conductance
may be expressed through the ac electrical conductance
G(ω) [18]

K =
~3

4ge2T 2

∫ ∞
0

dω
ω2Re{G(ω)}

sinh2(~ω/(2T ))
, (7)

where Re{x} is the real part of x.
To find G(ω) in the model equation (5) we will use a

Kubo formula [31,32]

G(ω) =
−i
~ω

lim
ωn→−iω

∫ β

0

dτeiωnτ 〈I(τ)I(0)〉. (8)

In above expression we will use 〈X〉 =
Z−1

∫
DθDφXe−SSCHA/~, where Z is the partition

function. Expanding the current into a Fourier se-
ries and accounting the quadratic nature of action
equation (5) we obtain G(ω) = −i/(~ωβ) lim

ωn→−iω
Φn,

where Φn = 〈InI−n〉. Using the current definition (at
point x = x2) I = ieπ−1/2∂θ(x2, τ)/∂τ [17] (where
θ(x2, τ) = θ(τ) + φ(τ)/2), we get In = −eωn

βπ1/2 (θn + φn/2).
Straightforward calculations give

Re{G(ω)} = gG0

×
{

ω2(1 + cos(ω/∆ω))
ω2
V (1 + cos(ω/∆ω)) + 2ωV ω sin(ω/∆ω) + 2ω2

+
ω2(1− cos(ω/∆ω))

ω2
c(1− cos(ω/∆ω)) + 2ωcω sin(ω/∆ω) + 2ω2

}
. (9)

Substituting equation (9) into equation (7) we obtain the
thermal conductance of a quantum dot within the SCHA
with respect to the Coulomb blockade effect (T, ~ω � Ec).
The analysis of the dependence K(T, ωV ) is presented in
the following parts.

Notice that the obtained expressionG(ω) describes the
plasmon contribution to the electrical conductance of a
double barrier (the case of a single barrier was consid-
ered in Ref. [19]). Because the plasmons (i.e., the low-
amplitude oscillations of a bosonic field) are neutral, this
contribution vanishes in the limit ω → 0. In the used for-
malism the charge is carried by topological excitations of
the bosonic (phase) field [16]. The change of θ by π1/2

corresponds to the transfer of 1e from the left to right
leads [17].

3 Thermal conductance of a symmetrical
quantum dot

We assume that V1 = V2, (i.e., r1(2) = r; t1(2) = t). In
such a case

ωV = ωV 0 cos
2

2−g (πN + kFd),

~ωV 0 = µ

(
γEc

µ

) g
2−g
(

4gr
πt

) 2
2−g

. (10)

From above expression we see that at some values of N
(Vg) the effective potential vanishes (ωV = 0), that is due
to a degeneration of the electrostatic energy in QD charge
(q ↔ q + e) [7,11] In this case the Coulomb blockade
is lifted and the heat current increases. So, the thermal
conductance shows periodic peaks as a function of N (see
Fig. 1). This effect is quite analogous to that in the case
of a charge transfer [1–4], excepting the neutral nature of
plasmons.

Note that in the case of an asymmetrical quantum dot
(V1 6= V2) the effective potential barrier V , equation (4)
does not vanish at any values of Vg and the Coulomb
blockade oscillations in K(Vg) will be slightly pronounced
only.
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Fig. 1. The dependence of the thermal conductance K in units
of K0 = πT/(6~) on the quantum dot potential N = CVg/e
for the symmetrical case (V1 = V2) at low ~ωV 0/T = 10 (1)
and high ~ωV 0/T = 0.1 (2) temperatures. The parameters are
g = 1; T = ∆p; ∆p/Ec = 0.1.

3.1 Shape of the Coulomb blockade peak

The shape of peaks in K(Vg) essentially depends on the
temperature (see Fig. 2). The crossover occurs at T ∼ T ∗,
where T ∗ = ∆p/π

2; ∆p = π~v/d is the level spacing for
plasmons in the isolated (V1,2 → ∞) quantum dot. For
the case of Fermi liquid (g = 1) it is ∆p = ∆F, where
∆F = π~vF/d is the level spacing near the Fermi en-
ergy µ for electrons in the isolated quantum dot. Note,
because the plasmons are neutral the magnitude of ∆p

is not renormalized by the Coulomb energy in contrast
with electrons [33]. However ∆p increases when the inter-
electron repulsion strengthens (∆p ∼ 1/g; g < 1). Near
the peak maximum (~ωV � T ) the thermal conductance
equals

K/K0 = 1− 3~ωV
2πT

, ~ωV � T � T ∗, Ec (11)

K/K0 =
1
2
− 3~ωV

25/2πT
, T ∗, ~ωV � T � Ec. (12)

Here K0 = πT/(6~) is the thermal conductance of a one-
dimensional ballistic channel [34,35]. Thus, with increas-
ing temperature the height of peak reduces two times.
This is due to the charging energy (the capacity C) lead-
ing to the dependence of the electrical conductance G on
the frequency ω equation (9). Note, that at EC = 0 and
~ωV = 0 we will obtain G(ω) = gG(0) that formally fol-
lows from equation (9). At low temperatures (T � T ∗)
the main contribution to the thermal conductance comes
from low-frequency (long wavelength) plasmons which do
not “feel” the inner structure of a potential barrier. In this
case the heat transfer (in the peak maximum) through the
system is defined by the thermal conductance of a single
fully transmitting (t = 1) barrier. At higher temperatures
the thermal conductance reduces two times that is due
to a destructive interference of contributions of plasmons
with different frequencies. Effectively, it is a result of a

Fig. 2. The dependence of the thermal conductance K on the
effective barrier height ωV . ∆ωV = ωV (N) sgn(N − Nmax),
where Nmax corresponds to the peak maximum. The curves
correspond to T � T ∗ (1); T = T ∗ (2); T = 50T ∗ (3) (T ∗ =
∆p/π

2). The parameters are g = 1; ∆p/Ec = 0.01.

noncoherent (at T � T ∗) transmission through a double
potential barrier. In this case at peak maximum (ωV = 0)
we have two fully transmitting (t1 = t2 = 1) barriers con-
nected in series. The thermal conductance of each of two
barriers is K0 so the system conductance is K = K0/2.
However, we emphasize that the reduction of a thermal
conductance is due to averaging over the temperature in
the phase-coherent system without any real inelastic pro-
cesses (which occur only in the electron reservoirs far from
the system). The effect of a destructive interference due
to the temperature is enough common for the mesoscopic
ballistic systems. The energy scale T ∗ ∼ ∆F/π

2 is charac-
teristic for the persistent current problem [36]. This scale
is also important for describing the transport properties
of ballistic mesoscopic samples [37,38].

3.2 Temperature dependence of the thermal
conductance

The dependence of the thermal conductance on the tem-
perature at some values of an effective potential is depicted
in Figure 3. One can see that for the small barrier

~ωV ∼ T ∗ (13)

the dependence K(T ) is essentially nonmonotonic at T ∼
T ∗ that is due to a mutual influence of two effects. On the
one hand, the above mentioned destructive interference
effect leads to a reduction of K with the temperature. On
the other hand, the increase of the number of high-energy
(ballistic) plasmons (with ω > ωV ) causes the increase of
K. Note that the condition equation (13) is valid either
near the peak maximum or for the barrier with a small
reflection amplitude (r → 0; t ∼ 1) (the strong tunneling
regime). In the last case the dependence K(Vg) slightly
oscillates (Fig. 1, the curve 2).

The analytical expressions for K(T ) may be obtained
either at ωV = 0 or at ~ωV � T . Using equations (9, 7)
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Fig. 3. The temperature dependence of the thermal conduc-
tance K at ωV = 0 (1); ~ωV /T

∗ = 0.1 (2); 1(3); 10(4). The
parameters are g = 1; ∆p/Ec = 0.01.

we get the Coulomb peak height (ωV = 0) as follows

K/K0 =
1
2

(
1 + 3

T/T ∗ tanh(T/T ∗)− 1
sinh2(T/T ∗)

)
, (14)

where T ∗ = ∆p/π
2. This dependence is depicted in Fig-

ure 3 (the curve 1). Note, that the same crossover (at
T → 0) for the electrical conductance was obtained in
reference [28].

Further we consider the heat transfer far from the
Coulomb peak maximum. We assume

~ωV � T, T ∗. (15)

In this case the main mechanism of a heat transfer is tun-
neling of plasmons. At T � T ∗ it follows from equation (9)
Re{G(ω)} = G0{(ω/ωV )2 + (ω/ωc)2}. Substituting this
expression into equation (7) we obtain

K(T ) = K0
4π2

5~2
T 2

(
1
ω2
V

+
1
ω2

c

)
, T � T ∗. (16)

The same temperature dependence was firstly obtained
for the case of a single barrier in references [24,18].

At more high temperatures (T � T ∗) the effect
of resonant tunneling of plasmons must be accounted.
The importance of such an effect was emphasized in
references [23,24]. With respect to equation (15) we can
expand the dependence G(ω) equation (9) into the sum
of the Breit-Wigner resonances and the quadratic in ω
background

Re{G(ω)} = gG0

{ ∞∑
n=0

Γ 2
nV

(ω − ωrnV )2 + Γ 2
nV

+
(
ω

ωV

)2

+
∞∑
n=1

Γ 2
nc

(ω − ωrnc)2 + Γ 2
nc

+
(
ω

ωc

)2
}
, (17)

where ωr
nV =ωnV (1 + 2∆p/(π~ωV )); ~ωnV = ∆p(2n + 1),

(n = 0,1, . . . ); ωr
nc=ωnc(1− 2∆p/(π~ωc)); ~ωnc = 2∆pn,

(n = 1,2, . . . ) and

ΓnV =
2∆p

π

(
ωnV
ωV

)2

; Γnc =
2∆p

π

(
ωnc

ωc

)2

. (18)

Substituting equation (17) into equation (7) we obtain

K = K0

∑
i=c,V

1
~2ω2

i

×
{

4π2

5
T 2 +

24T∆p

π2

∞∑
n=0

(ωni/(2T ))4

sinh2(ωni/(2T ))

}
, (19)

(here we neglect an unimportant difference between ωni
and ωr

ni). In the limit T � T ∗ one can replace
∑
n →∫

dω/(2∆p) that gives

K(T ) = K0
8π2

5~2
T 2

(
1
ω2
V

+
1
ω2

c

)
, T � T ∗. (20)

From equations (16, 20) it follows that for the tunneling
regime it is K ∼ T 3 at all the temperatures. But with
increasing temperature (T > T ∗) the numerical factor in
this relation increases two times that is due to resonant
tunneling of plasmons.

4 Discussion and conclusion

The thermal transport through a double potential barrier
(a quantum dot) with one-dimensional (one-channel) in-
teracting (Luttinger liquid) leads under Coulomb block-
ade regime is considered for the case of spinless
electrons at low temperatures. The thermal conduc-
tance is calculated within the self-consistent harmonic
approximation [20,19], which describes the heat transfer
by plasmons. It is shown that the dependence of the ther-
mal conductance on the potential of a quantum dot con-
sists of a series of peaks which are due to a lift of the
Coulomb blockade.

At the Coulomb blockade peak maximum the thermal
conductance is linear in the temperature K ∼ T that is
due to a ballistic heat transfer through a quantum dot.
However, the factor in this relation reduces two times with
increasing the temperature T > T ∗ equation (14) that is a
consequence of the transition from the coherent plasmon
transfer through a double potential barrier to the inco-
herent transfer through two barriers connected in series.
This is in accordance with the behaviour of an electrical
conductance [28,12]. So, because of a ballistic transport
at the peak maximum (for the symmetric double barrier)
the Lorentz number L = K/(GT ) does not depend on the
strength of interelectron interactions and the Wiedemann-
Franz law holds L = L0 = (π2/3)(kB/e)2. At the same
time, away from the resonance it is L 6= L0 that is due
to the fact that the electrical current and the heat cur-
rent are carried by the different particles (by electrons
and plasmons, respectively) [18,22–24].
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In the tunneling regime (~ωV � T ) the thermal con-
ductance due to plasmons is K ∼ T 3, equations (16, 20).
We compare the plasmon contribution with the electron
contribution to the total thermal conductance. Firstly we
consider the case of Fermi liquid (g = 1). At low temper-
atures under Coulomb blockade regime the main mech-
anism of an electron transport through the dot is elastic
(T � ∆F) or inelastic (T � ∆F) cotunneling [8,9]. Inelas-
tic cotunneling in the strong-tunneling regime (when the
module of reflection amplitude of a single potential barrier
r → 0) [12] as well as in the weak-tunneling regime (when
the module of transmission amplitude of a single barrier
t→ 0) [8,9] leads to a quadratic temperature dependence
of the electrical conductance G ∼ T 2 (at T � ~ωV ),
that corresponds to the cubic temperature dependence of
the electron contribution to the total thermal conductance
Ke ∼ T 3. The plasmon contribution has the same temper-
ature dependence equation (20). At lower temperatures
(T � T ∗) elastic cotunneling leads to the temperature
independent electrical conductance G ∼ (∆F/Ec)2. In
such a case the electron contribution to the thermal con-
ductance exceeds the plasmon one Kp ∼ (T/Ec)2 equa-
tion (16): Ke/Kp ∼ (∆F/T )2 � 1. At T ∼ ∆F (more pre-
cisely at T ∼ T ∗) the electron and plasmon contributions
are of the same order and the nonmonotonic temperature
behaviour due to a plasmon transport may be visible. On
the other hand, in the case of repulsively interacting elec-
trons (g < 1) the electrical conductance of a quantum dot
is G ∼ T 4/g−2 at ∆p � T � Ec and G ∼ T 2/g−2 at
T � ∆p [28]. Therefore, at g < 1/2 the plasmon con-
tribution (∼ T 3) to the thermal conductance of a QD
dominates at all the temperatures 0 < T � Ec. In the
case of moderate repulsive interactions (1/2 < g < 1) the
plasmon term dominates at ∆p(∆p/µ)

2−2g
2g−1 < T � Ec.

In the case of Fermi liquid (g = 1) for the strong co-
tunneling regime (r → 0) the electrical conductance of a
quantum dot may be calculated exactly at ∆F � T �
Ec [12]. Using this solution and equation (7) we readily
obtain the thermal conductance for the strong cotunnel-
ing regime (the subscript “sc”) as follows

Ksc =
~2

16πT 2

∫ ∞
0

dω
ω2

sinh2(~ω/(2T ))

×
{

1 +
1
~ω

∫ ∞
−∞

dε
Γ 2

0

ε2 + Γ 2
0

(f0(ε+ ~ω)− f0(ε))
}
, (21)

where f0(x) = (exp(βx) + 1)−1 is the Fermi function;
Γ0 = 2γEc

π2 (r2
1 + r2

2 + 2r1r2 cos(2πN + 2kFd)). Now we
compare the thermal conductance obtained in the SCHA
equations (7,9) at g = 1 with the one defined by equa-
tion (21) (note, that ~ωV = 2Γ0). The dependences of
both Ksc (the curve 2) and the SCHA thermal conduc-
tance (the curve 1) on ~ωV /T are depicted in Figure 4.
These dependences are in a good agreement with each
other. So, at Γ0 � T we have Ksc = K0

2

(
1− 3πΓ0

16T

)
. Com-

paring with equation (12) we conclude that in this regime

Fig. 4. The dependence of the thermal conductance K on the
ratio ~ωV /T for strong cotunneling (Ec � T � ∆p; r → 0)
of noninteracting (g = 1) electrons. The curves correspond
to the self-consistent harmonic approximation (1); the exact
expression for the electrical conductance reference [12] (2); and
SCHA with a changed potential height ω∗V = 1.25ωV (squares).

the deviation of a total thermal conductance from the bal-
listic value is described by SCHA with a relative accuracy
of order 15%. At low temperatures ∆F � T � Γ0 we

have Ksc = K0
3π2

10

(
T
Γ0

)2

. And as it follows from equa-
tion (20) (note that at r → 0 we have ~ωV � Ec) the
relative accuracy of SCHA is of the order of 30%. We may
improve upon the agreement slightly renormalizing the ef-
fective potential, equation (6) ω∗V = 1.25ωV . In fact, this
means the change of the high-frequency cut-off. The ob-
tained dependence K(~ω∗V /T ) is depicted in Figure 4 by
squares.
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